

IBM0436A86LQKA IBM0436A86SQKA

8 Mb Synchronous Communication SRAM

Features

- 100% bus utilization at high frequencies
- Optimized control logic for minimum control signal interface
- CKE to enable or suspend clock operations
- Three chip enable pins (CE, CE2, CE2) for depth expansion with double cycle deselect
- Single Read/Write control pin (R/W)
- Individual Byte Write controls
- Synchronous Pipeline Mode of Operation with fully coherent Self-Timed Late-Late-Write

- Registered control inputs, addresses and data I/O
- Burst feature supports interleaved or linear burst orders
- Sleep mode, for reduced stand-by power
- 100-pin TQFP package
- 3.3 V (SQKA) or 2.5 V (LQKA) power supply and I/O
- LVTTL input and output levels
- 256K x 36 or 512K x 18 organization

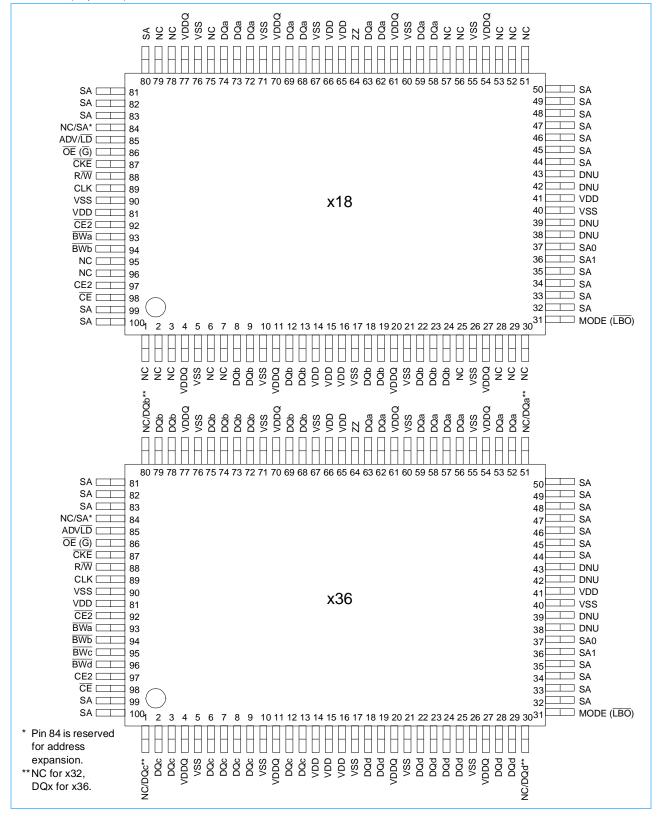
Description

The IBM0418A86LQKA/SQKA and IBM0436A8LQKA/SQKA are 8 Mb Synchronous Pipeline SRAMs specifically optimized for communication system applications. These SRAMs utilize the Late-Late-Write protocol and optimized I/O timing parameters to permit 100% bus utilization for any sequence of read and write operations. Please consult application notes for an example at: http://www.chips.ibm.com/techlib/products/commun/appnotes.html. Developers of non-network system communication applications should contact their local IBM representative for a suitability assessment and SRAM recommendation.

The clock input (CLK) is used to register all synchronous input pins on its rising edge. Synchronous inputs include clock enable (\overline{CKE}), chip enable (\overline{CE} , CE2 and $\overline{CE2}$), cycle start input (ADV/ \overline{LD}), all addresses (SA), read/write control ($\overline{R/W}$), byte write controls (\overline{BWa} , \overline{BWb} , \overline{BWc} , \overline{BWd}) and all data inputs (DQ).

Asynchronous inputs include output enable (\overline{OE}) , which may be carefully timed to optimally reduce bus turn-around time, and Sleep enable (ZZ). The static burst mode pin (MODE) selects between interleaved and linear burst modes and should be tied high (or left unconnected) for interleaved burst order (or if Burst Mode is not used), or tied low for linear burst order.

Read, Write and Deselect cycles (see *Read/Write Command Truth Table* on page 7) are initiated with $ADV/\overline{LD} = Iow$. Subsequent Read or Write operations can load new addresses ($ADV/\overline{LD} = Iow$), or use the internally generated burst address if $ADV/\overline{LD} = high$ (See Burst Sequence Truth Tables on page 7) based on the initial address that was loaded.


For write operations, Byte Write inputs (\overline{BWa} , \overline{BWb} , \overline{BWc} , \overline{BWd}) are registered each cycle the address is loaded externally, or advanced from the i burst counter, data is registered two active cycles later.

Sleep mode is enabled by switching asynchronous signal ZZ High. When the SRAM is in Sleep mode, the outputs will go to a High-Z state, and the SRAM will draw a standby current of I_{SB2Z} after a delay of t_{ZZI} . SRAM data will be preserved during Sleep mode, but any read or write operation that is pending while entering Sleep mode is not guaranteed. A recovery time (t_{ZZR}) is required before the SRAM resumes normal operation.

The SRAM operates from a single 3.3 V or 2.5 V power supply, and supports LVTTL I/O levels.

Pinout (Top View)

©IBM Corporation. All rights reserved.

Use is further subject to the provisions at the end of this document.

Ordering Information

Part Number	Organization	Function	V _{DD} /V _{DDQ} (Volts)	Cycle/Access (ns)
IBM0418A86LQKA-6				6.0/3.5
IBM0418A86LQKA-7				6.7/3.8
IBM0418A86LQKA-7F			2.5/2.5	7.5/4.2
IBM0418A86LQKA-10	5401/ 40			10.0/5.0
IBM0418A86SQKA-6	512K x 18	LVTTL Pipeline		6.0/3.5
IBM0418A86SQKA-7			2.2/2.2	6.7/3.8
IBM0418A86SQKA-7F			3.3/3.3	7.5/4.2
IBM0418A86SQKA-10				10.0/5.0
IBM0436A86LQKA-6				6.0/3.5
IBM0436A86LQKA-7				6.7/3.8
IBM0436A86LQKA-7F			2.5/2.5	7.5/4.2
IBM0436A86LQKA-10	0501/ 000			10.0/5.0
IBM0436A86SQKA-6	256K x 36	LVTTL Pipeline		6.0/3.5
IBM0436A86SQKA-7			0.0/0.0	6.7/3.8
IBM0436A86SQKA-7F			3.3/3.3	7.5/4.2
IBM0436A86SQKA-10	M0436A86SQKA-10			10.0/5.0

Pin Descriptions

Symbol	Туре	Description
CLK	Input	Clock: This signal registers the address, data, chip enables, byte write enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around clock's rising edge.
CKE	Input	Synchronous Clock Enable: This active low input enables the CLK input. When high, the CLK input is ignored, and the previous cycle is extended.
CE CE2	Input	Synchronous Chip enable : These active low inputs are used to enable the device and are sampled only when a new external address is loaded (ADV/LD low). Double cycle deselect protocol.
CE2	Input	Synchronous Chip enable: This active high input is used to enable the device and is sampled only when a new external address is loaded (ADV/LD low). Double cycle deselect protocol.
ADV/LD	Input	Synchronous Address Advance/Load: When low, a new address is loaded into the device (and Burst counter). When high, the internal burst counter is advanced and used $(R/\overline{W} \text{ is ignored})$.
SA0 SA1 SA	Input	Synchronous Address Inputs. SA0 and SA1 are the least significant Address bits, and are used to set the Burst Address counter for Burst operations. Pin 84 is reserved as the High order Address for the 16 Mb Late-Late-Write SRAM.
BWa BWb BWc	Input	Synchronous Byte Writes: These inputs allow individual bytes to be written (low), or masked (high) during a write operation. Byte writes are registered on the same clock edge as the Write Address (whether it is an externally provided or internally generated Address). These inputs have no effect during a Read operation.
R/W	Input	Read/Write: This synchronous input, sampled at the rising edge of CLK when ADV/LD is low, determines whether a Read (high) or Write (low) operation is initiated. For Write operations, the Byte Write Enable inputs provide byte control for Partial Write operations.
ŌĒ	Input	Output Enable: This active low, asynchronous input enables the Output Drivers.
MODE(<u>LBO</u>)	Input	Mode: A low on this pin selects Linear Burst order. A high or NC will default to Interleaved Burst order. Do not change input state once the device is operating.
DQa DQb DQc DQd	Input/Output	Data I/Os: DQa is Data Input and Output for Byte "a". DQb is for Byte "b",DQc is for Byte "c" and DQd is for Byte "d".
ZZ	Input	Sleep Enable: This active high, asynchronous input causes the chip to enter Sleep Mode, which is a low standby-current state. While ZZ is high, all other inputs are ignored, and data in the memory array is retained. Pin may be left unconnected.
NC	NC	No Connect: These pins can be left unconnected, or may be connected to GND to minimize thermal impedance or any other DC input.
V _{DD}	Supply	Power Supply: See <i>DC Electrical Characteristics</i> on page 9 and <i>Recommended DC Operating Conditions</i> on page 8 for range.
V _{DDQ}	Supply	Isolated Output Buffer Supply: See DC Electrical Characteristics on page 9 and Recommended DC Operating Conditions on page 8 for range.
V _{SS}	Supply	Ground: GND.
DNU	NC/Input	Do Not Use. Reserved pins. These can either be left unconnected or wired to GND to improve thermal impedance.

SRAM Features

Late-Late-Write

In the Late-Late-Write QBT (Quick Bus Turn) function, write data must be registered on the N+2 clock cycle and addresses and controls registered on the N base clock cycle. Read data is available in the N+1 clock cycle. Read data is valid for a full cycle plus access time from the time the address is registered. Write data must be provided with set-up time two cycles after the valid address. This provides 100% bus utilization.

In the unique case when a read cycle occurs after a write cycle to the same address, write data information is stored temporarily in holding registers. During the first write cycle preceded by a read cycle, the SRAM array will be updated with the address and data from the holding registers. Read cycle addresses are monitored to determine if read data is supplied from the SRAM array or from the write buffer holding registers.

Bypassing the SRAM array occurs on a byte-by-byte basis. When only one byte is written during a write cycle, read data from the address last written will have new byte data from the write buffer and the remaining bytes from the SRAM array. Late-Late-Write is extremely similar to Late-Write; just one additional cycle is needed to register the write data.

Burst Mode

The IBM0418/36A86 SRAM can operate in either linear or interleave burst modes using the LBO pin. Addresses are loaded via the ADV/LD pin. Once an address is loaded, it is designated as either a write or read address from the initial address load. All burst addresses produced by ADV pulses are either read or write as designated by the initial address. Only read OR write operation within a burst-loaded address is supported.

Power Down Mode

Power Down Mode, or "Sleep Mode," is accomplished by switching asynchronous signal ZZ high. When powering-down the SRAM inputs must be dropped first and V_{DDQ} must be dropped before or simultaneously with V_{DD} .

Power-Up Requirements

In order to guarantee the optimum internally regulated supply voltage, the SRAM requires 50 μ s of power-up time after V_{DD} reaches its operating range. SRAM power-up requires V_{DD} to be powered before or simultaneously with V_{DDQ} and inputs after V_{DDQ}. V_{DDQ} should not exceed V_{DD} supply by more than 0.4 V during power-up.

Sleep Mode Operation

Sleep mode is a low-power mode initiated by bringing the asynchronous ZZ pin high. During Sleep mode, all other inputs are ignored and outputs are brought to a High-Z state. Sleep mode current and output High-Z are guaranteed after the specified Sleep mode enable time. During Sleep mode, the array data contents are preserved. Sleep mode must not be initiated until after all pending operations have completed, as any pending operation is not guaranteed to properly complete after Sleep mode is initiated. Sense amp data is lost. Normal operation can be resumed by bringing ZZ low, but only after specified Sleep mode recovery time.

Cycle Definition Truth Table

Operation	Address used	CE	CE2	CE2	ZZ	ADV/ LD	R/W	BWx	ŌĒ	CKE	CLK	DQ	Notes
Deselect Cycle	None	Н	х	х	L	L	Х	Х	х	L	L→H	High-Z	
Deselect Cycle	None	Х	н	х	L	L	Х	Х	х	L	L→H	High-Z	
Deselect Cycle	None	х	х	L	L	L	Х	х	х	L	L→H	High-Z	
Deselect Cycle (Continue)	None	х	х	х	L	н	х	х	х	L	L→H	High-Z	1
Read Cycle (Begin Burst)	External	L	L	н	L	L	Н	х	L	L	L→H	Q	
Read Cycle (Continue Burst)	Next	х	x	х	L	н	х	х	L	L	L→H	Q	1, 2
No Op /Dummy Read (Begin Burst)	External	L	L	н	L	L	Н	х	н	L	L→H	High-Z	3
Dummy Read (Continue Burst)	Next	х	x	х	L	н	х	х	н	L	L→H	High-Z	1, 2, 3
Write Cycle (Begin Burst)	External	L	L	н	L	L	L	L	х	L	L→H	D	4
Write Cycle (Continue Burst)	Next	х	х	х	L	н	х	L	х	L	L→H	D	1, 2, 4
No Op /Write Abort (Begin Burst)	None	L	L	Н	L	L	L	Н	х	L	L→H	High-Z	3, 4
Write Abort (Continue Burst)	Next	х	х	х	L	н	х	Н	х	L	L→H	High-Z	1, 2, 3, 4
Clock Disabled (Stall)	Current	х	х	х	L	х	х	х	х	Н	L→H	Held	5
Sleep Mode	None	х	х	х	н	х	х	х	х	х	х	High-Z	

1. Continue Burst Cycles are initiated with the ADV/LD pin held high. The type of cycle that is performed (Deselect, Read or Write) is determined by the initial Deselect or Begin Read/Write burst cycle.

2. The address counter is incremented for all Continue Burst cycles (see Interleaved Burst Sequence Truth Table on page 7 and Linear Burst Sequence Truth Table on page 7 for Burst order and wrap information).

- 3. Dummy Read and Write Abort cycles can be considered Non-Operations or "NOP." All BWx inputs must be High to prevent a Write operation from being performed.
- 4. OE may be tied low to reduce the number of control pins for the SRAM. The device will automatically tri-state the output drivers during a Write cycle. By carefully controlling the OE timings, cycle time improvements can be obtained.
- 5. If a Clock Disable (CKE = High) command is issued during a Read operation, the DQ bus will remain active (Low-Z). If it occurs during a Write operation, the bus will remain inactive (High-Z), and any pending Data-In is delayed by an additional cycle. No operation will be performed during the Clock Disable cycle.
 - X=Don't Care, H=Logic High, L= Logic Low. BWx=H means all byte write inputs (BWa, BWb, BWc, BWd) are High. BWx=L means one or more byte write signals are Low. (See *Read/Write Command Truth Table* on page 7 for more information on byte enable control).
 - All inputs except OE and ZZ must meet setup and hold times around the rising edge of CLK
 - CKE held High will insert wait states. Internal device registers will hold their previous values.
 - On-chip circuitry is included to ensure that outputs are held in High-Z during power-up.

First Address (External)	Second Address (Internal)	Third Address (Internal)	Fourth Address (Internal)
XX00	XX01	XX10	XX11
XX01	XX00	XX11	XX10
XX10	XX11	XX00	XX01
XX11	XX10	XX01	XX00

Interleaved Burst Sequence Truth Table (Mode=High or NC)

Linear Burst Sequence Truth Table (Mode=Low)

First Address (External)	Second Address (Internal)	Third Address (Internal)	Fourth Address (Internal)
XX00	XX01	XX10	XX11
XX01	XX10	XX11	XX00
XX10	XX11	XX00	XX01
XX11	XX00	XX01	XX10

Read/Write Command Truth Table

Function	R/W	BWa	BWb	BWc	BWd
Read	Н	х	х	х	х
Abort Write (No Operation)	L	Н	Н	Н	Н
Write Byte "a"	L	L	н	н	н
Write Byte "b"	L	н	L	н	н
Write Byte "c"	L	н	н	L	н
Write Byte "d"	L	н	Н	н	L

Any combination of BWx inputs may be used during Write operations to perform partial Byte Writes.
Shaded area of table does not apply to the x18 part, as only BWa and BWb are provided.

Absolute Maximum Ratings

Parameter	Symbol	Rating	Units	Notes
Power Supply Voltage	V _{DD}	-0.5 to 4.3	V	1
Output Power Supply Voltage	V _{DDQ}	-0.5 to V _{DD}	V	1
Input Voltage	V _{IN}	-0.5 to V _{DD} +0.5	V	1, 2
DQ Input Voltage	V _{DQIN}	-0.5 to V _{DDQ} +0.5	V	1
Junction Temperature	TJ	150	°C	1
Operating Temperature	T _A	0 to 70	°C	1
Storage Temperature	T _{STG}	-55 to +150	°C	1
Short Circuit Output Current	Ι _{ΟυΤ}	25	mA	1

1. Stresses greater than those listed under Absolute Maximum Ratings table may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Excludes DQ inputs.

Recommended DC Operating Conditions (T_A=0 to +70 °C)

Parameter	Symbol		Min.	Тур.	Max.	Units	Notes
	N	2.5 V	2.25	2.5	2.75		
Supply Voltage	V _{DD}	3.3 V	3.0	3.3	3.63	V	1
		2.5 V	2.25	2.5	V _{DD}		_
Output Driver Supply Voltage	V _{DDQ}	3.3 V	3.135	3.3	V _{DD}	V	1
Input High Voltage		2.5 V	1.7		V _{DDQ} + 0.3		
	V _{IH}	3.3 V	2.0		V _{DDQ} + 0.3	V	1, 2
Input Low Voltage	V _{IL}		-0.3	_	0.8	V	1, 3
Input Leakage Current	IL		-2.0		2.0	μA	5
Output Lligh Valtage (I 4 0mA)	V	2.5 V	2.0				
Output High Voltage (I _{OH} =-4.0mA)	V _{OH}	3.3 V	2.4			V	1, 4
	V	2.5 V	_		0.2		
Output Low Voltage (I _{OL} =8.0mA)	V _{OL}	3.3 V			0.4	V	1, 4
Output Leakage Current	IL _O		-4.0		4.0	μA	

1. All voltages referenced to V_{SS} . All V_{DD} , V_{DDQ} and V_{SS} pins must be connected. V_{DDQ} and V_{DD} = 2.5 V or 3.3 V nominal. Mixed voltage levels for V_{DDQ} and V_{DD} not supported.

2. $V_{IH}(Max)DC = V_{DDQ} + 0.3 V$, $V_{IH}(Max)AC = V_{DDQ} + 0.85 V$ (pulse width ≤ 4.0 ns).

3. $V_{IL}(Min)DC = -0.3 \text{ V}, V_{IL}(Min)AC = -1.5 \text{ V} (pulse width \le 4.0 \text{ ns})$

4. Driver AC characteristics are higher than the shown DC values. See AC Test Loading on page 10 for actual test conditions.

5. MODE pin has an internal pull-up, and $IL_1 = +/-100\mu A$.

DC Electrical Characteristics (T_A=0 to +70 °C, V_{DD}=3.3 V \pm 10% or 2.5 V \pm 10%)

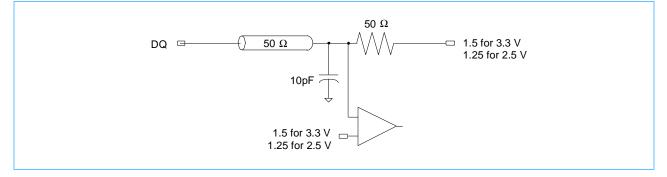
Denen ster	Symbol	Max.				Units	Notes
Parameter		-6	-7	-7F	-10	Units	Notes
Average Power Supply Current - Operating Device Selected; $V_{IL} \ge all \text{ inputs } \ge V_{IH}$; Cycle time $\ge t_{KHKH}$ (min); V_{DD} =max.; Outputs open	I _{DD}	230	210	190	140	mA	1, 2
Average Power Supply Current - Idle Device Selected; V_{SS} + 0.2 ≥ all inputs ≥ V_{DD} - 0.2; CKE ≥ V_{DD} - 0.2; Cycle time ≥ t_{KHKH} (min); V_{DD} =max	I _{DD1}	25	25	25	25	mA	1, 2
CMOS Standby Current Device De-selected; V_{SS} + 0.2 ≥ all inputs ≥ V_{DD} - 0.2; All inputs static; Clocks idle; V_{DD} =max	I _{SB2}	25	25	25	25	mA	2
TTL Standby Current Device Deselected; $V_{IL} \ge all$ inputs $\ge V_{IH}$; All inputs static; Clock frequency = 0; V_{DD} =max	I _{SB3}	25	25	25	25	mA	2
Clock Running Current Device Deselected; V_{SS} + 0.2 ≥ all inputs ≥ V_{DD} - 0.2; Cycle time ≥ t_{KHKH} (min); V_{DD} =max	I _{SB4}	85	75	65	50	mA	2
Sleep Mode Current $ZZ \ge V_{IH}, V_{DD}=max$	I _{SB2Z}	20	20	20	20	mA	

1. I_{DD} does not include I_{DDQ} (output driver supply) current. Current increases with faster cycle times. I_{DDQ} is a function of Clock Frequency and output load.

2. See Cycle Definition Truth Table on page 6 for complete definition of Selected and Deselected cycles.

TQFP Thermal Characteristics

Item	Symbol	Rating	Units
Thermal Resistance Junction to Ambient	RΘJA	32	°C/W
Thermal Resistance Junction to Case	RΘJC	4	°C/W

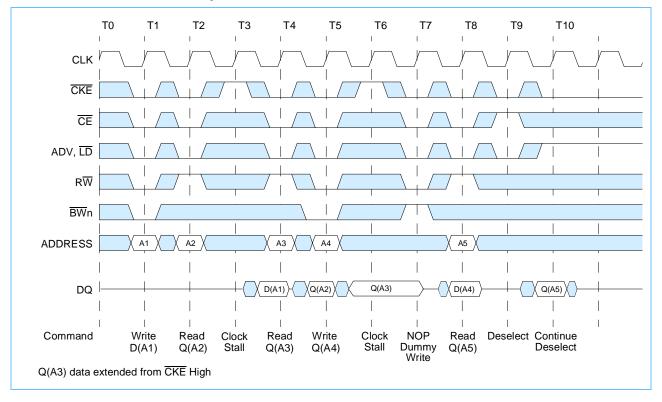

$\label{eq:capacitance} \textbf{(} T_{A} \text{=} 0 \text{ to } \text{+} 70 \ ^{\circ}\text{C} \text{, } V_{DD} \text{=} 3.3 \text{ V} \pm 10\% \text{, } \text{f=1 MHz} \text{)}$

Parameter	Symbol	Test Condition	Max	Units	Notes
Control and Address Input Capacitance	C _{IN}	$V_{IN} = 0V$	4	pF	1
Data I/O Capacitance (DQ0-DQ35)	C _{OUT}	$V_{OUT} = 0V$	5	pF	1
1. Capacitance Values are sampled.					

AC Test Conditions (T_A=0 to +70 °C, V_{DD &}V_{DDQ}=3.3 V or 2.5 V \pm 10%, See *AC Test Loading* figure below.)

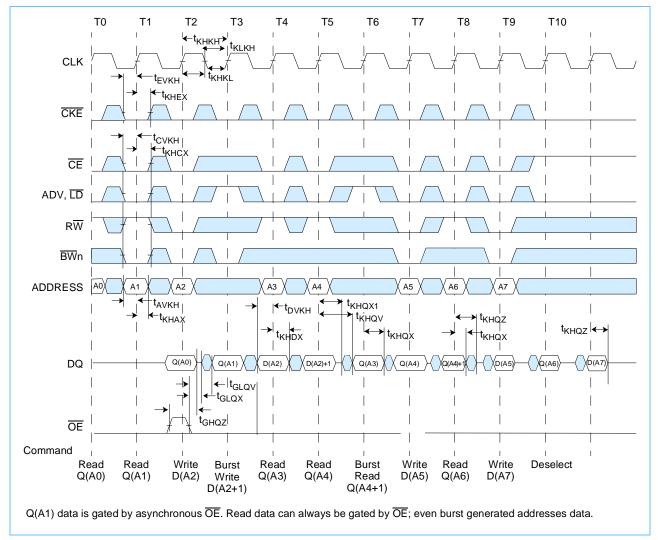
Parameter	Symbol	V _{DD} /V _{DDQ} ±10%	Conditions	Units
	V	2.5 V	2.5	N .
Output Driver Supply Voltage	V _{DDQ}	3.3 V	3.3	V
Input High Level	V	2.5 V	2.0	N .
	V _{IH}	3.3 V	1.5	V
Input Low Level	V _{IL}		V _{SS}	V
		2.5 V	1.25	N N
Input Timing Reference Voltage		3.3 V	1.5	V
Output Deferrer v Vellere		2.5 V	1.25	N
Output Reference Voltage		3.3 V	1.5	V
Input Rise Time	T _R		0.5	ns
Input Fall Time	Τ _F		0.5	ns

AC Test Loading

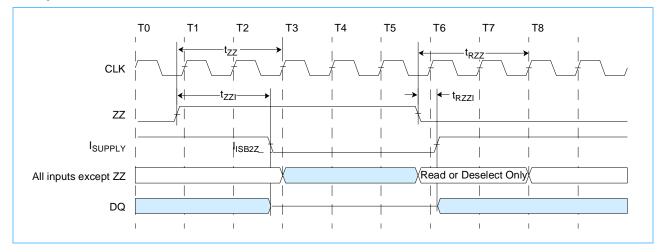

AC Characteristics ($T_A = 0$ to +70 °C, $V_{DD} \& V_{DDQ} = 2.5$ or 3.3 V)

Parameter		Quarterst	-6		-7		-7F		-10		11.3	
		Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Units	Notes
Clock	Cycle Time	t _{КНКН}	6.0	—	6.7	—	7.5	—	10	—	ns	
	Clock High Pulse Width	t _{KHKL}	2.0	—	2.2	_	2.5	—	3.0	_	ns	
	Clock Low Pulse Width	t _{KLKH}	2.0	_	2.2	_	2.5	_	3.0	_	ns	
	Clock Enable Set-up time	t _{EVKH}	1.5	—	1.5	_	1.5	—	1.5	_	ns	
	Clock Enable Hold time	t _{KHEX}	0.5	—	0.5	—	0.5	_	0.5	—	ns	
Output Times	Clock to Output Valid	t _{KHQV}	_	3.5	—	3.8	—	4.2	—	5.0	ns	1
	Clock to Output Invalid	t _{KHQX}	1.5	_	1.5	_	1.5	—	1.5	_	ns	1
	Clock High to Output Low-Z	t _{KHQX1}	1.5	—	1.5	—	1.5	—	1.5	—	ns	1, 2
	Clock High to Output High-Z	t _{KHQZ}	1.5	3.0	1.5	3.0	1.5	3.5	1.5	3.5	ns	1, 2
	Output Enable to Output Valid	t _{GLQV}	_	3.5	—	3.8	—	4.2	—	5.0	ns	1
	Output Enable to Low-Z	t _{GLQX}	0.0	_	0.0	_	0.0	_	0.0	_	ns	1, 2
	Output Enable to High-Z	t _{GHQZ}	_	3.0	_	3.0	—	3.5	—	4.0	ns	1, 2
Setup Times	Address Setup Time	t _{AVKH}	1.5	_	1.5	_	1.5	_	1.5	_	ns	
	Sync Select Setup Time	t _{CVKH}	1.5	_	1.5	_	1.5	_	1.5	_	ns	
	Write Enables Setup Time	t _{WVKH}	1.5	_	1.5	_	1.5	—	1.5	_	ns	
	Data In Setup Time	t _{DVKH}	1.5	_	1.5	_	1.5	_	1.5	_	ns	
Hold Times	Address Hold Time	t _{KHAX}	0.5	_	0.5	_	0.5	—	0.5	_	ns	
	Sync Select Hold Time	t _{KHCX}	0.5	_	0.5	_	0.5	_	0.5	_	ns	
	Write Enables Hold Time	t _{KHWX}	0.5	_	0.5	_	0.5	—	0.5	_	ns	
	Data In Hold Time	t _{KHDX}	0.5	_	0.5	_	0.5	—	0.5	_	ns	
Sleep Mode	ZZ active to input ignored	t _{ZZ}	0.0	2(t _{KHKH)}	0.0	2(t _{KHKH})	0.0	2(t _{KHKH})	0.0	2(t _{KHKH})	ns	
	ZZ inactive to input sampled	t _{RZZ}	0.0	2(t _{KHKH)}	0.0	2(t _{KHKH})	0.0	2(t _{KHKH})	0.0	2(t _{KHKH})	ns	
	ZZ active to Sleep current	t _{ZZI}	0.0	2(t _{KHKH)}	0.0	2(t _{KHKH})	0.0	2(t _{KHKH})	0.0	2(t _{KHKH})	ns	
	ZZ inactive to exit Sleep current	t _{RZZI}	0.0		0.0	_	0.0	_	0.0	_	ns	

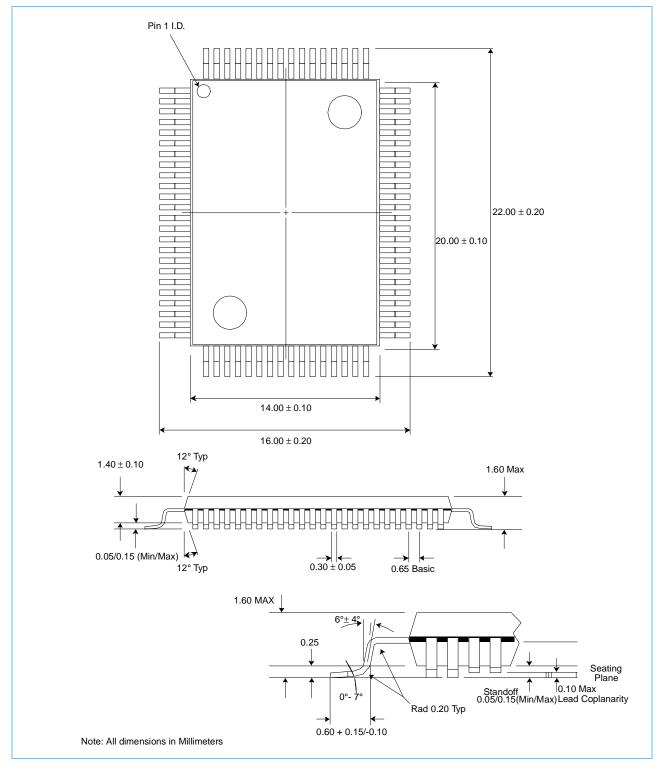
2. This parameter is sampled. Transition is measured $\pm\,200\text{mV}$ from steady-state.



NOP, Stall, and Deselect Cycles



Read Write Cycles



Sleep Mode

Revision Log

Rev	Contents of Modification
8/26/99	Initial public release (00).
9/16/99	Corrected V _{DD} /V _{DDQ} column in Ordering Information table. Release document version 01.
9/27/99	Changed name of product to Synchronous Communication SRAM. Fixed notes on <i>Cycle Definition Truth Table</i> on page 6 Release document version 02.
1/18/00	Updated I_{SB} , I_{ZZ} , and I_{SB1} numbers. Updated T_{GLQV} for -7 products.
6/22/00	Updated ISb4 definition for Typo. Added Mechanical drawing. AC Test Conditions for 3.3V. Updated Active Currents.
9/18/00	Updated description paragraph on page 1. Removed -8F sorts.
10/02/00	Standardized Snooze mode to Sleep mode throughout.
10/12/00	Removed Preliminary classification. Release document version 03.

© Copyright International Business Machines Corporation 1999.

All Rights Reserved Printed in the United States of America October 2000

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.IBMIBM logoPowerPC™

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. The information contained in this document does not affect or change IBM's product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division 1580 Route 52, Bldg. 504 Hopewell Junction, NY 12533-6351

The IBM home page can be found at http://www.ibm.com The IBM Microelectronics Division home page can be found at http://www.chips.ibm.com

llwp.03 10/11/2000